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In two recent reviews (Geary 2018, 2019), Geary attributed a substantial role in generating
individual differences in the general factor of intelligence, g, to mitochondrial functioning.
While understanding the appeal of reducing a complex psychological phenomenon to an elementary
biological cause and providing a new lease to Spearman’s theory of g as mental energy, we find the
evidence supporting the theory to be rough-and-ready, indirect, or even contradictory. In particular,
the theory lacks specificity in describing the causal path from mitochondria to g in two respects: (1) it
would imply that genetic effects on g would exert their effect on mitochondria, which is at odds with
current genetic evidence; (2) if g reflects variation in mitochondrial functioning and thus differences
in g loadings necessarily indicate differences in the extent to which performance on a test depends
on mitochondrial functioning, then the theory fails to account for why the effect of mitochondrial
functioning on performance is greater in tests that have higher across-domain correlations.

First, the theory is contradicted by genetic studies of g. Cognitive ability is strongly heritable:
based on quantitative genetic studies, in childhood around 50%, and in adulthood up to 80% of
individual differences in cognitive ability or IQ scores can be ascribed to genetic differences (Plomin
and Deary 2015; Polderman et al. 2015). Most studies use simple sum scores or first unrotated principal
components of multiple cognitive tests as the dependent variable in quantitative genetic studies.
However, when cognitive ability is decomposed to its hierarchical factor structure, g usually turns out
to be even more heritable, while in less general abilities, genetic factors play a progressively weaker
and environmental variables a progressively stronger role (Shikishima et al. 2009; Panizzon et al. 2014).

Quantitative genetic studies remain agnostic about the nature of the genetic determinants of a trait.
However, recent large-scale genome-wide association studies (GWASs) revealed a large number of
single nucleotide polymorphisms (SNPs) associated with cognitive ability (Lam et al. 2017; Savage et al.
2017; Trampush et al. 2017; Zabaneh et al. 2017; Davies et al. 2018; Hill et al. 2018). Even larger studies
investigating the genetic correlates of educational attainment (Rietveld et al. 2013; Okbay et al. 2016;
Lee et al. 2018) also found genetic variants which predicted cognitive ability. GWAS-derived polygenic
scores currently predict up to 10% of cognitive performance (Lee et al. 2018; Allegrini et al. 2019).
Within-family studies indicate that this effect size may be inflated due to population stratification,
but a substantial proportion is still retained (Selzam et al. 2019). The functional interpretation of these
genetic variants is not simple, because (1) many SNP hits are in intergenic regions with an unknown
function, and (2) SNP hits are not necessarily causal for g; it is very likely that they are merely in linkage
disequilibrium with truly functional variants in neighboring genomic regions. Still, multiple attempts
have been made to at least approximately interpret the biological function of g-associated SNPs.
These studies have unequivocally shown that g-associated genetic variants are primarily expressed
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in the brain, in specific brain regions and specific cell types, and they are implicated in very specific
cellular functions, none of which concern mitochondria (Lam et al. 2017; Sniekers et al. 2017; Davies et
al. 2018; Hill et al. 2018; Lee et al. 2018; Savage et al. 2018; Coleman et al. 2019). These findings are
summarized in Table 1.

Table 1. Selected studies about the biological function of g-associated genetic variants. The last three
columns highlight the organs, organ regions (typically brain regions) and cell types in which the
genes mapped to g-associated single nucleotide polymorphisms (SNPs) were significantly enriched.
We note that most of these studies used genetic data from multiple overlapping cohorts, hence cannot
be considered independent.

Study Data Source N Organ Region Cell Type or Function

Lam et al. 2017

Multiple
cohorts also
used in the
Sniekers et al.
2017; Trampush
et al. 2017;
Okbay et al.
2016 GWASs.

107,207 Brain, pituitary

Cerebellar hemisphere,
cerebellum, frontal
cortex, cortex, anterior
cingulate, nucleus
accumbens, caudate
nucleus, hypothalamus,
hippocampus, putamen,
amygdala

Neuron, neuron
projection,
neurogenesis,
synapses, dendrites,
synapse organization

Savage et al.
2018

UK Biobank,
COGENT
consortium and
12 other sources

269,867 Brain

Amygdala, anterior
cingulate cortex, caudate
nucleus, cerebellar
hemisphere, cerebellum,
cortex, frontal cortex,
hippocampus,
hypothalamus, nucleus
accumbens, putamen

Medium spiny neuron,
pyramidal
(somatosensory,
hippocampal CA1)

Davies et al.
2018

CHARGE and
COGENT
consortia, UK
Biobank

300,486 Brain, pituitary

Cerebellum, cerebellar
hemisphere, cortex,
frontal cortex,
hippocampus, nucleus
accumbens,
hypothalamus,
amygdala, caudate
nucleus, putamen,
substantia nigra,
pituitary

Neurogenesis,
regulation of nervous
system development,
neuron projection,
nervous system
development, neuron
differentiation,
regulation of cell
development,
dendrites

Hill et al. 2018

Meta-analysis
of the Sniekers
et al. 2017;
Okbay et al.
2016 GWASs,
UK Biobank

248,482 Brain, pituitary

Cerebellar hemisphere,
cerebellum, frontal
cortex, cortex, anterior
cingulate, nucleus
accumbens,
hippocampus, amygdala,
hypothalamus, caudate
nucleus, putamen,
substantia nigra

Neurogenesis, nervous
system development,
cell development,
neuron projection,
CNS neuron
differentiation,
synapse, neuron
differentiation,
oligodendrocyte
differentiation

Coleman et al.
2019

Meta-analysis
of the Zabaneh
et al. 2017;
Sniekers et al.
2017 GWASs

87,740 Brain, pituitary Frontal cortex

Pyramidal
(somatosensory,
hippocampal CA1),
medium spiny neuron,
embryonic GABAergic
neuron, serotonergic
neuron

The current evidence suggests that the known genetic variants associated with individual
differences in g affect specific areas of the brain, more specifically the frontal and anterior cingulate
cortex, the cerebellum and certain subcortical structures. They seem to be expressed in specific cell
types, and their functional role seems to be concentrated in neurogenesis, neuronal development
and synaptic functions. This is in accordance with the watershed model that proposes that the
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causal effect of genotypes on intelligence as an observed phenotype is exerted through intermediate
endophenotypes (Kievit et al. 2016).

In our view, these results are incompatible with individual differences in mitochondrial functioning
playing a major role in creating individual differences in g. Mitochondria are present in all cells in
all human tissues. If differences in mitochondrial function were to underlie individual differences in
g, then g-associated genetic variants would not be expressed in specific tissues and cell types only.
This would especially be the case if—as the hypothesis put forward by Geary (Geary 2018, 2019)
suggests—the correlation between g and physical health (Calvin et al. 2011; Deary et al. 2019) exists
because the same differences in mitochondrial functioning that create higher g in the central nervous
system result in better physical health and greater longevity through their effects in other tissues.
In our view, the functional role of g-associated SNPs is more consistent with the hypothesis that a large
number of diverse, minor tissue- and cell-specific differences in the nervous system underlie g.

Second, since reflective latent variable models require a realistic ontology (Borsboom et al. 2003),
if g in fact represents mitochondrial functioning, then in reflective models, g loadings must represent
the extent of mitochondrial involvement. Since the general factor is a simple algebraic consequence
of the positive manifold (Krijnen 2004), “it is always important to remember that it is the positive
manifold, not g as such, that needs explanation” (Mackintosh 2011, p. 165). Therefore, translating g
loadings in terms of the positive manifold itself, this means that the tests that correlate most strongly
with other tests that have different content are the ones in which variation in performance depends
most on mitochondrial functioning—according to Geary’s theory.

Hence, the theory should provide hypotheses regarding why such differences between g loadings
in different tests depend on the relative involvement of mitochondrial function or energy. For instance,
it is generally found that the more complex a task, the higher its g loading. However, complexity is
not identical to difficulty. There are a number of manipulations that are able to increase g loadings,
and the theory should be able to account for these. Why is mitochondrial functioning more relevant
for backward digit span than for forward digit span? For odd-one-out reaction time than for simple
reaction time?

Additionally, the factor Gf is found to be identical or near-identical to g (Gustafsson 1984; Kan et
al. 2011), pointing to the centrality of fluid/inductive reasoning in g. Why does an inductive reasoning
task, such as the completion of a number series or an incomplete matrix, require much more energy
than a difficult short term memory task or a speed test, which requires one to work as fast as one can?

Even if the ultimate cause of differences in g loadings is mitochondrial functioning, a proximate
psychological or physiological mechanism is needed that mediates this effect. Simply presuming
that the stronger g loading is the result of such tasks’ higher “energy requirement”, without further
explanation, would be tautological. If mitochondrial energy is more important for certain tasks and
specific ability factors that are also most strongly related to g, then it should be explained why that is
the case.

For the above reasons, our view is that individual differences in mitochondrial functioning
probably do not underlie individual differences in g. The quest for the equivalent of psychological g,
the common cause for the covariance in the performance on diverse cognitive tests, is still ongoing.
In the meantime, theories and models that actually explain such covariance without assuming a
common cause in the first place (Kovacs and Conway 2016; Savi et al. 2019; Van Der Maas et al. 2006)
should probably also be considered.
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